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ABSTRACT: G protein-coupled receptors (GPCRs) conserve
common structural folds and activation mechanisms, yet their ligand
spectra and functions are highly diverse. This work investigated how
the amino-acid sequences of olfactory receptors (ORs)the largest
GPCR familyencode diversified responses to various ligands. We
established a proteochemometric (PCM) model based on OR
sequence similarities and ligand physicochemical features to predict
OR responses to odorants using supervised machine learning. The
PCM model was constructed with the aid of site-directed
mutagenesis, in vitro functional assays, and molecular simulations.
We found that the ligand selectivity of the ORs is mostly encoded in
the residues up to 8 Å around the orthosteric pocket. Subsequent
predictions using Random Forest (RF) showed a hit rate of up to
58%, as assessed by in vitro functional assays of 111 ORs and 7 odorants of distinct scaffolds. Sixty-four new OR−odorant pairs were
discovered, and 25 ORs were deorphanized here. The best model demonstrated a 56% deorphanization rate. The PCM-RF approach
will accelerate OR−odorant mapping and OR deorphanization.

■ INTRODUCTION

Decoding the sequence−function relationship of proteins is
extremely challenging. Slight changes in the sequence may
significantly affect the function, whereas proteins with low
sequence identity may exhibit similar functions. G protein-
coupled receptors (GPCRs) are the most remarkable examples
of this phenomenon. They are the largest membrane protein
family and the targets for about 40% of marketed drugs.1 The
human genome contains over 800 genes coding for GPCRs,2

which exert differentiated and specific functions in the complex
cellular signaling network. Half of these genes are olfactory
receptors (ORs) that endow us with fascinating capacities of
odor discrimination.3 Mammalian GPCRs conserve a typical
structure of seven transmembrane helices (7TM) that house
an orthosteric ligand-binding pocket.4 They show a conserved
signaling mechanism that involves large-scale conformational
changes to accommodate their cognate G proteins. The
mechanism is encoded in conserved motifs throughout the
7TM, which form a network of inter-TM contacts converging
at the cytoplasmic side.5 Specifically, the “D(E)RY”, “CWLP”,
and “NPxxY” motifs in TM3, TM6, and TM7, respectively, are
the most conserved hubs of the allosteric communication
between the orthosteric pocket and the cytoplasmic side of
class A GPCRs.4 The orthosteric pocket, by contrast, has
diversified extensively and resulted in huge variations in the
receptors’ function.
This study focuses on the functional heterogeneity of ORs

and how this is encoded in the OR sequences. ORs

discriminate a vast spectrum of volatile molecules (odorants)
and code for an innumerous number of odors perceived in the
brain. The many-to-many relationships between ORs and
odorants are key to understanding odor perception.6 Although
odorant-binding proteins (OBPs) also contribute to odor
detection, they are abundant extracellular proteins that
participate in perireceptor events by selecting/carrying odor-
ants.7,8 Currently, OR−odorant interactions are mostly
measured in heterologous cells, especially for human ORs,
which neglects the effect of OBPs. ORs are also expressed
ectopically, and some have emerged as appealing drug
targets.9−12 We sought to predict OR responses to various
odorants using OR sequence alignment, proteochemometrics
(PCM),13 and machine learning. The PCM model was based
on the OR sequence similarities and the chemical features of
the odorants. Sequence-based approaches can handle large
protein families and circumvent the difficulties in obtaining
high-resolution structures, as is the case for ORs. Machine
learning models using protein sequences and ligand chemical
similarities have shown great success in predicting drug−target
interactions, such as reviewed in refs 14−16. Attempts to
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predict OR responses to odorants have also achieved
encouraging results.17−20 However, data scarcity in the
immense odor space is a major bottleneck for good
predictivities. To date, less than 50% of human ORs (hORs)
and 20% of mouse ORs (mORs) have been deorphanized with
less than 250 odorants (Table S1). One effective way to handle
data scarcity is dimension reduction, such as by selecting
relevant residues in the OR sequences (the so-called feature
selection). A recent study on insect and mammalian ORs
demonstrated that selecting subsets of 20 residues could
indeed increase the model predictivity.20 However, if one
assumes that a given function is mostly encoded by 20 residues
out of a GPCR sequence of ∼300 residues, the binomial
coefficient [300!/20!(300 − 20)!] gives more than 1030

possible combinations. Therefore, selecting relevant residues is
key to constructing an effectual model.
Like other GPCRs, ORs respond to their ligands via

allosteric mechanisms, which involve distinct interwound
factors: ligand affinity, intrinsic stability of different receptor
states, as well as long-range allosteric coupling between the
ligand-binding pocket and the cytoplasmic side.21 Ligand
affinity is thought to be dictated by the residues outlining the
binding pocket.22,23 ORs that respond to the same odorants
share higher sequence homology around the pocket than in the
rest of the receptor sequence.18

The OR response to odorants can be drastically altered by
mutations that are distant from the pocket.24 It is nontrivial to
select the relevant residues. Here, we combined molecular
modeling, site-directed mutagenesis with in vitro functional
assays, and machine learning to identify the most relevant
residues. PCM modeling and random forest (RF) were
employed to predict OR responses to prototypical odorants
using the relevant residues. Finally, in vitro functional assays

were performed to assess the selection of relevant residues as
well as the predictivity of the PCM-RF model. This approach
(outlined in Figure 1A) largely outperformed existing models
by enabling knowledge-based residue selection. It illustrated
how the functional heterogeneity of G protein-coupled ORs is
encoded in the sequence.

■ RESULTS

Database of OR−Odorant Pairs for Model Training.
We examined all of the literature data of in vitro dose-
dependent responses of hORs and mORs to diverse odorants.
These include 1293 OR−odorant pairs consisting of 390 ORs
and 244 odorants. In addition, we included more than 14 400
OR−odorant pairs which have been reported to be non-
responsive in vitro. The database (Data File S1) contains 720
distinct ORs (including 318 orphan ORs) and 244 odorants.
Four odorants were considered here as test cases: acetophe-
none, coumarin, R-carvone, and 4-chromanone. They have
been associated with many ORs (dozens to hundreds) in
previous studies (Table 1). To enlarge the training set, we also
included the data of 6 additional odorants that have similar
chemical structures to the 4 target odorants.

Selection of Relevant Residues. Molecular Modeling.
Given the existing knowledge of GPCR structures, we first
sought for odorant-binding residues within the orthosteric
ligand-binding pocket. The mouse OR mOR256-31 (gene
name Olfr263) was chosen as a prototype, since it is a broadly
tuned receptor which responds to three of the four odorants
(coumarin, R-carvone, and acetophenone).25,26 We built a 3D
homology model of mOR256-31 bound with the odorants
using our previously established approaches and molecular
dynamics simulations.24,25,27 The 3D model was built under

Figure 1. Machine learning protocol and residue selection. (A) Machine learning workflow, in which different residue subsets were extracted from
the sequence alignment for the training of different models. The PCM approach combined the OR sequence features, the ligand physicochemical
features, and the response data (if available) of each OR−ligand pair. (B) Available site-directed mutagenesis data (including literature data,
summarized in ref 24) projected on the 3D model of mOR256-31. Residues in dark red and red belong to poc17 and poc20, respectively. (C)
Matthew’s correlation coefficient (MCC)28 and hit rate of the RF classifiers on the in vitro test set.
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the constraints of conserved amino-acid motifs and site-
directed mutagenesis data covering nearly 50% (95 residues)
of the TM domain.24 Seventeen residues were identified within
a 5 Å distance of the bound odorants (Table S2). Fourteen of
these residues had been shown to be important for OR
responses to odorants by site-directed mutagenesis (Table S2).
These 17 residues were assumed to be in direct contact with
the odorants (named poc17 hereafter, Figure 1B). However,
the relevant residues should include many more than the sole
binding pocket.
Site-Directed Mutagenesis. Twenty-four point-mutations

were generated within and around poc17 of mOR256-31. Their
impact on the receptor’s response to five ligands was measured
by in vitro dose-dependent responses (Figure S1). We
projected the mutational effect onto the 3D model of
mOR256-31, together with all of the OR mutations reported
in the literature (Figure 1B). Twenty residues including poc17
and 3 peripheric residues (Figure 1B) delineated a larger
orthosteric pocket (poc20). Mutations within poc20 consis-
tently affected the response to most of the odorants. Beyond
the region of poc20, the mutational effect was less systematic
(Figure 1B).
To determine the best subset of residues for predicting OR

responses to odorants, we proceeded in an empirical approach.
Namely, we selected 5 small-to-large residue subsets as
heuristics, based on the above results: poc17, poc20, poc27,
poc60, and TM191. poc27 and poc60 are extensions of the

pocket until 6 and 8 Å from the bound odorant, containing 27
and 60 residues, respectively (Figure 1C and Table S3).
TM191 contains the whole 7TM region made up of 191
residues. Machine learning models were then built with these
residue subsets to compare their predictive power.

PCM and Machine Learning. From the sequence alignment
of hORs and mORs, each of the 5 heuristic residue subsets
were extracted. PCM models were constructed using the data
in Table 1 and physiochemical features of the odorants (see
the Material and Methods section). Each OR−odorant pair
was labeled with the in vitro response (responsive or
nonresponsive). We trained and assessed supervised support
vector machine (SVM) and RF classifiers using 5-fold cross
validation. The response probability of each OR−odorant pair
was predicted, and a probability >0.5 was classified as
responsive. The predictivity was measured by Matthew’s
correlation coefficient (MCC).28 RF performed better than
SVM. The predictivities of the five RF classifiers were not
significantly different from one another.
However, they were clearly superior to a naive statistical

inference (Figure S2A; see the Supplementary Methods
section for the calculation of the statistical inference). The
poc60 classifier performed the best on average (Figure S2A,
Data File S2A,B). Control models built with 60 randomized
residues, as expected, showed no predictivity (Figure S2A). To
determine the best residue subset, we constructed five final RF
classifiers (poc17, poc20, poc27, poc60, and TM191) using

Table 1. Chemical Structure, PubChem CID, and Training Dataa of the Query Odorants (in Bold) and Their Analogues

aP: number of responsive (positive) ORs. N: number of nonresponsive (negative) ORs. See Data File S1 for the lists of ORs.
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100% of the data in Table 1. Each classifier was then used to
screen for new ORs for acetophenone, R-carvone, coumarin,
and 4-chromanone. The in silico screening was performed on
360 ORs (223 hORs and 138 mORs), including 346 orphan
ORs. Each classifier predicted and ranked the probabilities of
the ORs to respond to each of the 4 odorants (Data File S2C).
In Vitro Assessment of Relevant Residues. We tested the

predictions of all five classifiers in cell functional assays. For
each model, we tested all ORs in the responsive class
(predicted response probability >0.5 for any odorant) as well
as 60 negative control ORs (response probability <0.5 for all
odorants). These ORs were tested against all 4 odorants. For

instance, in the case of poc60, we tested all 20 ORs in the
responsive class and 60 randomly picked negative controls
from the nonresponsive class (Figure 2). Similar tests were
performed on the other four models (Figure S3 and Table S4,
Data File S2C,D). When significant responses were observed at
300 μM, dose-dependent responses were measured. Otherwise,
the OR−odorant pair was considered nonresponsive. The
poc60 classifier performed the best on the in vitro test set
(Figure 1C). It showed 0.39−0.60 hit rates and 0.43−0.48
predictivity (MCC) for the 4 odorants (Table 2). Therefore, in
vitro data confirmed that poc60 is the most relevant residue
subset to decode the receptor’s response to odorants. These

Figure 2. In vitro evaluation of machine learning predictions of OR responses to odorants. (A) All of the OR−odorant pairs were ranked by the
predicted probability to be responsive. The initial model assessments focused on four odorants. 20 responsive and 60 nonresponsive ORs (negative
controls) predicted by the poc60 model were selected for functional assays. Heatmaps show the in vitro EC50 values, in which the false predictions
are labeled with ×. Assessments of the other models are provided in Figure S3. (B) In vitro assessment of the poc60 model predictivity for acyclic
odorants. (C) Dose-dependent response curves of all of the responsive OR−odorant pairs identified in this study. Error bars indicate SEM (n = 3−
6).
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residues show very low conservation in hORs and mORs
(Figure S2B), suggesting that they have diversified to adapt to
various ligands.22,23 This implies that amino acid conservations
in the OR sequences contain essential information for their
functionality. Thus, we tested an additional model using the
amino acid conservations in the TM region. This model turned
out to be nearly as predictive as using the amino acid
physicochemical features (Figure 1C). This indicates that the
type of features used to describe the amino acids is not critical,
as long as the features sufficiently convey the sequence
differences to the machine learning algorithm.
Assessment of Model Utility. Applicability to Other

Odorants. While 50% of hORs and 20% of mORs have been
deorphanized at the time of this study, only a tiny fraction of
the odorant chemical space (<250 odorants) has been tested.
The lack of data on odorants is a major restraint on the model
utility. To explore this limitation, we generated a learning curve
of the poc60 model predictivity on the external test set versus
the amount of training data used (Figure S4A). The learning
curve suggested that a meaningful prediction could be obtained
for an odorant with ∼15 known ORs. In the current database
containing 244 odorants, only 17 (7%) met this criterion, 11 of
which contained aromatic or cyclic structures. We attempted
three more odorants that contain alkyl chains, citral, nonanal,
and nonanoic acid. Following the same procedure, we tested in
vitro all 11 ORs that were predicted to respond to any of the
three odorants as well as 8 negative control ORs (Figure 2B).
Because the training data lacked responsive ORs for these
odorants, the model predicted less responsive pairs than for the
4 cyclic odorants. In vitro assays showed that the model
performed well on nonanal and nonanoic acid but not on citral

(Table 2). The poor predictivity on citral was likely due to the
lack of analogues (thus the lack of data) in the training set
(Table 1) and the fact that citral is a mixture of two isomers,
which add ambiguity to the available data. The results
demonstrate that the model is generalizable to odorants of
different chemical groups, provided enough training data for
the odorants in question or their close analogues.

General Model Performance. We evaluated the general
performance of the poc60 model on all of the external test set
data, including those tested for the other models and for citral.
The test set data were shuffled and split into 5 folds, like in a
cross validation. The model predictivity was coherent on the 5
folds of the data set, which gave 0.39−0.46 hit rates and 0.32−
0.34 MCC (Table S6). Blind OR−odorant screening hit rates
in Hana3A cells are expected to be lower than 0.1, such as in a
pioneer study on 245 hORs and 219 mORs against 93
odorants.19 Note that the odorants tested here might be more
promiscuous than average, since the model requires training
data for the query odorants or their analogues. Our test set also
enriched more responsive ORs (26%) than in the natural pool
of ORs (e.g., 13% in ref 19), despite the large number of
negative-control ORs included. Since many ORs fail to express
on the membrane of heterologous cells, it is difficult to
estimate the general response rate of ORs to various odorants.
The total external test sets in this work contained 111 ORs

and 438 OR−odorant pairs. We identified 63 new OR−
odorant pairs with EC50 values in the micromolar to
millimolar range, corresponding to 29 ORs (Figure 2C, Figure
S3 and Table S5). Twenty-five ORs were deorphanized in this
study, including 9 from the negative control groups. Never-
theless, the deorphanization rate is significantly higher in the

Table 2. Performance of the poc60 Model in Predicting New OR−Odorant Pairsa

initial test odorants additional test odorants

metricsb acetophenone R-carvone coumarin 4-chromanone citral nonanal nonanoic acid

MCC 0.47 0.45 0.43 0.48 0.24 0.48 0.40
hit rate (precision) 0.39 0.6 0.58 0.6 0.50 0.50 0.25
recall (sensitivity) 0.78 0.46 0.47 0.5 0.25 0.67 1.00
F1 score 0.52 0.52 0.52 0.55 0.33 0.57 0.40
specificity 0.85 0.94 0.92 0.94 0.93 0.88 0.65
AUC 0.84 0.72 0.72 0.74 0.58 0.66 0.74
true positives 7 6 7 6 1 2 2
true negatives 60 63 60 64 14 14 11
false positives 11 4 5 4 1 2 6
false negatives 2 7 8 6 3 1 0

aSee Data File S2C for the raw data. bSee the Methods section in the SI for the definitions.

Figure 3. Location of the residues that best encode OR responses to ligands, illustrated with mOR256-31. Conserved motifs in ORs are squared.
The N- and C-termini are truncated for clarity.
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predicted positive groups than in the negative control groups
(Figure S4B), which are 56% and 15%, respectively, for the
poc60 model.
Utility for New ORs and Odorants. One important aspect

of the model utility is its predictivity on new ORs and odorants
that are not part of the training set. While 56 out of the 95 ORs
in the external test set are “new”, we recalculated the model
performance metrics for this part of the test set. The model still
showed good predictivity compared to the full test set (Table
S7). The model predictivity on new odorants was evaluated by
the following test: we excluded the 7 odorants one by one from
the training set, retrained the model, and calculated the
performance metrics on the test set containing only the
excluded odorant. In this case, the model only showed
predictivity for cyclic odorants, acetophenone, R-carvone, and
4-chromanone (Table S8). Therefore, the application to new
odorants is currently limited by the lack of training data, as
already discussed above. New data will gradually enable the
application to more odorants. Currently, the model is readily
applicable to new ORs for which there are no training data.

■ DISCUSSION
This work illustrates how the G protein-coupled ORs’ response
to ligands can be decoded from their sequence. Sixty residues
around the odorant-binding pocket contain the highest signal-
to-noise ratio and dictate the variation in the ORs’ response to
the odorants (Figure 3). The ligand-binding pocket of GPCRs
has highly diversified during evolution to discriminate various
stimuli. It is not surprising that the ORs’ response to the
odorants could be predicted by using less than 20% of the
sequence, made up with highly variable residues. The results
validate previous predictions of pocket residues based on OR
sequence analysis22,23 and numerous site-directed mutagenesis
data,23,24 which are located in the upper portion of TM3 and
TM5−TM7. Here, we highlight 4 residues in TM2 near a
conserved allosteric site (centered at D2.50). The allosteric site
in nonolfactory class A GPCRs (typically composed of D2.50,
N3.35, and S3.39) is known to bind the Na+ ion, which
modulates the receptors’ activation and affinity/response to
ligands (reviewed in ref 29). Most ORs contain a second acidic
residue (E3.39) at this site, which might also accommodate
divalent cations.29 While copper ions play important roles in
the recognition of sulfur odorants,30,31 it remains unclear
whether this conserved site in the ORs is involved. The
machine learning model established here outperformed
existing models using full sequences.17,19 The pocket residues
are essential for understanding how chemically similar
odorants are differentiated by the OR family with such high
specificity/selectivity.
So far, research focusing on specific OR−ligand recognition

has mostly employed molecular modeling (e.g., homology
modeling, docking, and molecular simulations) verified by site-
directed mutagenesis and functional assays of individual ORs,
such as the studies reviewed in ref 32, as well as the more
recent work on hOR1A1 for R-/S-carvone enantiomers,33

hOR5AN1 and mOR215-1 for musk odorants,34 zebrafish ORs
for bile acids/salts,35 and a virtual screening for new mOR-EG
ligands.36 This approach provides valuable insights into OR−
ligand recognition and will continue to generate data for new
ORs and ligands. Since it relies on experimental data to
generate predictive molecular models, this approach is not
suitable for large-scale OR−ligand pairing. The molecular
modeling process can be automated to enable large-scale

studies;37 however, the performance has yet to be tested.
Ligand QSAR/SAR models using machine learning have also
been adopted to predict new OR ligands.38,39 This approach
allows a rapid virtual screening of large compound databases
and is widely used in drug design and drug toxicity
prediction.40 It is limited to the target receptor and the
chemical scaffolds of the known ligands. However, the
application on ORs will gradually enrich ligand data and
reduce the bottleneck of our PCM model.
The machine learning PCM approach established here is

readily applicable to the entire mammalian OR family. It will
significantly accelerate OR−ligand mapping and OR deorpha-
nization. It is an open loop process where newly identified
OR−odorant pairs can be added to continuously improve the
model. Because we optimized the model to maximize the hit
rate (to reduce the cost of in vitro assays), this consequently
gave way to false negatives (Figure S4C). Therefore, repeating
the prediction−test loop is necessary to rescue the false
negatives by injecting new training data. Note that the lack of
response of many orphan ORs might be due to impaired
functions in heterologous cells, e.g., lack of cell surface
expression.41 For instance, ∼30% of the mORs responding to
acetophenone in vivo did not show significant responses in
heterologous cells.18 Such cases may be present in the
nonresponsive ORs in the in vitro test set, the proportion of
which is difficult to estimate.
This approach is mostly applicable to large protein families

like GPCRs or promiscuous proteins, such as functionally
related enzymes,34 odorant/pheromone-binding proteins in
insects,35 intrinsically disordered protein regions,36 as well as
GPCR-G protein binding partners.37 The approach focuses on
the sequence of the binding region, which overcomes the
difficulties in obtaining high-resolution structures or full
sequence alignments. It may find applications in, for example,
predicting off-target activities in drug design, targeting insect
pheromone receptors for pest control, or studies of protein−
protein interactions and protein evolution. It requires sequence
alignment and a number of known ligands as input data. The
selection of relevant residues is important, which enables
knowledge-based human intervention to reduce the dimen-
sionality and enhance machine learning on scarce data.
Combining in vitro functional assays, site-directed mutagenesis,
knowledge of GPCR structures and sequences, as well as
molecular modeling, we could generate heuristics to decipher
how nature has encoded the specific functions of ORs into
their varied sequences.
The model is currently limited to the transmembrane

domain where the sequence alignment has been established.
The loop regions may be addressed for OR subfamilies for
which good sequence alignments can be obtained. The
discovery of residue subsets associated with given functions
could indicate evolutionary hotspots and compensate for
existing tools such as phylogenetic analysis based on full
sequences.

■ MATERIALS AND METHODS
Chemicals and OR Constructs. Odorants were purchased

from Sigma-Aldrich. They were dissolved in DMSO to make
stock solutions at 1 mM and then freshly diluted in optimal
MEM (ThermoFisher) to prepare the odorant stimuli. The OR
constructs were kindly provided by Dr. Hanyi Zhuang
(Shanghai Jiaotong University, China). Site-directed mutants
were constructed using the Quikchange site-directed muta-
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genesis kit (Agilent Technologies). The sequences of all
plasmid constructs were verified by both forward and reverse
sequencing (Sangon Biotech, Shanghai, China). The list of
primers used in this study are listed in Table S9.
Cell Culture and Transfection. We used Hana3A cells, a

HEK293T-derived cell line that stably expresses receptor-
transporting proteins (RTP1L and RTP2), receptor expres-
sion-enhancing protein 1 (REEP1), and olfactory G protein
(Gαolf).

42 The cells were grown in MEM (Corning)
supplemented with 10% (v/v) fetal bovine serum (FBS;
ThermoFisher) and 100 μg/mL penicillin−streptomycin
(ThermoFisher), 1.25 μg/mL amphotericin (Sigma-Aldrich),
and 1 μg/mL puromycin (Sigma-Aldrich).
All constructs were transfected into the cells using

Lipofectamine 2000 (ThermoFisher). Before the transfection,
the cells were plated on 96-well plates (NEST) and incubated
overnight in MEM with 10% FBS at 37 °C and 5% CO2. For
each 96-well plate, 2.4 μg of pRL-SV40, 2.4 μg of CRE-Luc, 2.4
μg of mouse RTP1S, and 12 μg of receptor plasmid DNA were
transfected. The cells were subjected to a luciferase assay 24 h
after transfection.
Luciferase Assay. The luciferase assay was performed with

the Dual-Glo luciferase assay kit (Promega) following the
protocol in ref 42. OR activation triggers the Gαolf-driven AC-
cAMP-PKA signaling cascade and phosphorylates CREB.
Activated CREB induces luciferase gene expression, which
can be quantified luminometrically [measured here with a
bioluminescence plate reader (MD SPECTRAMAX L)]. Cells
were cotransfected with firefly and Renilla luciferases where
firefly luciferase served as the cAMP reporter. Renilla luciferase
is driven by a constitutively active simian virus 40 (SV40)
promoter (pRL-SV40; Promega), which served as a control for
cell viability and transfection efficiency. The ratio between
firefly luciferase versus Renilla luciferase was measured.
Normalized OR activity was calculated as (LN − Lmin)/(Lmax
− Lmin), where LN is the luminescence in response to the
odorant, and Lmin and Lmax are the minimum and maximum
luminescence values on a plate, respectively. The assay was
carried out as follows: 24 h after transfection, the medium was
replaced with 100 μL of odorant solution (at different doses)
diluted in optimal MEM (ThermoFisher), and cells were
further incubated for 4 h at 37 °C and 5% CO2. After
incubation in lysis buffer for 15 min, 20 μL of Dual-Glo
luciferase reagent was added to each well of a 96-well plate,
and firefly luciferase luminescence was measured. Next, 20 μL
of Stop-Glo luciferase reagent was added to each well, and
Renilla luciferase luminescence was measured. The data
analysis followed the published procedure in ref 42. Three-
parameter dose−response curves were fitted with GraphPad
Prism 8.
Molecular Modeling. Homology models of mOR256-3,

mOR256-8, and mOR256-31 were built using the approach in
our previous work.24,27 Four X-ray crystal structures of class A
GPCRs were used as templates, rhodopsin (1U19), CXCR4
(3ODU), A2aR (2YDV), and CXCR1 (2LNL), to build 100
models with Modeler v9.15.43 For docking, we chose the
model with the lowest DOPE score. Autodock Vina44 and the
Haddock 2.2 Web server45 were used to identify a common
top-ranked binding pose for each odorant. Residues in the
putative ligand-binding pocket were set flexible during docking.
Enhanced-sampling all-atom molecular dynamics simulations
were performed in a bilayer of an explicit POPC membrane
(see the Methods section in the SI for details). A cluster

analysis of the ligand-binding pose was carried out on the
simulation trajectories using the Gromacs Cluster tool. The
middle structure of the most populated cluster was selected as
the final binding pose.

Proteochemometric Machine Learning Model. We
assembled the response data of 720 ORs and 244 odorants
from the literature to construct the training set (Data File S1).
Ambiguous data records (i.e., OR responses without clear
dose-dependent data) were discarded. The full training set
contained 1293 responsive OR−odorant pairs (composed of
392 ORs and 244 odorants) and 14 459 OR−odorant pairs
that have been reported to be nonresponsive in vitro
(composed of 550 ORs and 127 odorants, including 318
orphan ORs). Each OR−odorant pair was represented by a
vector composed of physicochemical descriptors (features) of
the OR sequence and the odorant (see the Methods section in
the SI for details). The OR−odorant pairs in the training set
were labeled “positive” or “negative” according to the response
data for supervised machine learning. The test set was
constructed in the same manner without labels. The test set
contained 360 ORs (including 346 orphan ORs) available in
our laboratory, paired with the 7 odorants tested in this study.
RF and SVM classification models were built with the Caret
package in R.46 RF performed better than SVM and was
chosen for the final model. The R code generated during this
study is available as a Jupyter notebook, along with the input
and output data, at https://github.com/chemosim-lab/
OlfactoryReceptors under the GNU General Public License
v3.0. The Jupyter notebook illustrates step-by-step the model
building, training, and the in vitro assessment. The process is
illustrated in Figure S2A. More details can be found in the
Methods section in the SI.

Safety Statement. No unexpected or unusually high safety
hazards were encountered.
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